A Totally Decentralized Document Sharing System for
Mobile Ad Hoc Networks

Lionel BARRERE
LaBRI, Université Bordeaux 1
351 Cours de la Libération
33405 TALENCE Cedex
FRANCE

lionel.barrere@labri.fr

ABSTRACT

Many research projects have defined applications that are claimed
to operate in a MANet environment. Consider for instance these
software tools that make it possible to share information (files, data
bases, etc.). It appears that most of the proposed solutions require a
central server. Such a server makes it possible to store and then dis-
tribute a coherent copy of the data to the mobile units of the system,
thus providing some sort of data consistency. This approach does
not work in a real world MANet environment, where the presence
of a central server cannot be guaranteed. We believe that the appli-
cations that really work in a MANet context are those that do not
require global consistency. In this paper we present an application
that we have designed and implemented and that makes it possi-
ble to share a document among the mobile nodes of a MANet. We
furthermore decided to consider MANets without any specific net-
working layer, and to be more specific MANETs without routing.
The major originalities of our solution are that: -it works in a real
MANet environment (nodes are really mobile and can be turned on
or off at any time); - it makes it possible to modify the shared data
without any central server, still ensuring consistency. Of course
the price to pay is a number of limitations that we describe.

Categories and Subject Descriptors:
I.m [Computing Methodologies]: MISCELLANEOUS; D.m [Soft-
ware]: MISCELLANEOUS

General Terms:
Algorithms.

Keywords:

MANet, ad hoc networks, decentralized system, information shar-
ing, mobile interactive application, mobility.

The work presented in this paper is carried out at LaBRI (Labora-
toire Bordelais de Recherche en Informatique) and more precisely
in the SOD (Systemes et Objets Distribués) research team. It is
partly achieved within the framework of the Sarah (Services Asyn-
chrones pour Réseaux Ad Hoc) project supported by the ANR'. It
is also partly supported by the DGA? by means of a PhD grant.

! Agence Nationale de la Recherche.
2Délégation Générale pour I’ Armement.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiWac’06, October 2, 2006, Torremolinos, Malaga, Spain.

Copyright 2006 ACM 1-59593-488-X/06/0010 ...$5.00.

Arnaud CASTEIGTS
LaBRI, Université Bordeaux 1
351 Cours de la Libération
33405 TALENCE Cedex
FRANCE

arnaud.casteigts@Iabri.fr

Serge CHAUMETTE
LaBRI, Université Bordeaux 1
351 Cours de la Libération
33405 TALENCE Cedex
FRANCE

serge.chaumette@Iabri.fr

1. INTRODUCTION

Many research projects have defined applications that are claimed
to operate in a MANet environment. Nevertheless, most of them
require a central server. This does not work in a real MANet en-
vironment, where the reachability of such a central server cannot
be guaranteed. Therefore the applications that really work in a
MANet context are those that do not require the consistency among
the pieces of data that they share to be dealt with in a centralized
manner.

In this paper we present an application that makes it possible to
share a document among the mobile units of a MANet, which we
furthermore assume to be without any routing layer. The major
originalities of our solution are that: - it works in a real MANet
environment, i.e. where the mobile entities can be part of distinct
unconnected groups; it makes it possible to modify shared data still
ensuring consistency, without any central server. From a practi-
cal point of view, a document can be splitted into pieces and shared
among a set of mobile devices; the shared blocks can then be modi-
fied, splitted further, and the whole document can be locally rebuilt
at each node depending on the effective encounters of the different
mobile terminals. Each node is supplied with a tree based descrip-
tion of the shared document. When a block of data is splitted, the
associated node is given two children nodes that carry the splitted
contents. Copies of these blocks can then be given to other mobile
nodes so that they can work on it. Of course, so that a block can
effectively be shared, it is necessary to supply some sort of lock-
ing mechanism that will prevent multiple nodes from modifying
their respective copies at the same time. A version number is also
given to each instance of a block. These numbers are used when
two nodes meet, so as to work out the most recent version of the
block instances that they have in common. This makes it possible
to synchronize them.

Of course some problems remain. For instance, it can be the case
that a part of the global document is lost, if all the nodes that have
an instance of this block of data leave the current network or simply
crash. It can also be the case that a block of data, or more precisely
all of its instances, remain locked forever for the same reasons. It
will then be impossible to modify it further. Even though these
situations are difficult to deal with, it nevertheless perfectly cor-
responds to what happens in the real life, for instance when you
write a paper with colleagues, each one being in charge of a given
section. These risks are inherent to the nature of really mobile ap-
plications.

2. OVERVIEW OF THE SYSTEM

The system that we have defined makes it possible to share a doc-
ument among the nodes of a MANet. Several users can work (i.e.
modify) at the same time on independent parts of the document. To
work on a given part of a document, a node must acquire a copy or

instance of it. This results in multiple instances of a block, only one
of which should be modifiable at a time. To ensure this property, a
lock based mechanism is provided (see section 6). A synchroniza-
tion process is also defined (in section 8) that uses version numbers
to determine the most recent version among several instances of a
block. When users meet, the different parts/versions of the docu-
ment can then be synchronized.

2.1 Document representation

The shared document is structured as a binary tree. The con-
tents of the document is carried by the leaves. An identifier is con-
structed for each block by concatenating either *1° for the left son
or ’2’ for the right son to the identifier of its father.

2.2 Splitting and merging

This section defines how the document is shared and synchro-
nized between nodes and what the implications of these operations
are on the structure of the tree. We define two basic operations that
are splitting and merging. The + symbol represents the concatena-
tion of the contents (i.e the effective data) of two blocks.

Splitting

A part of the document, i.e. a block, can be splitted into pieces.
This operation modifies the tree that describes the document as
shown figure 1. We note (o, Bg) a node with identifier o and
contents By.

(o, 0) (o, 0) (@, Bo.1+Ba2)
(o, f“) — e

With By + B2 = Ba

(o1, Ba1) (0.2, Ba2) (o1, Bo1) (.2, Boo2)

Figure 1: Splitting opera- Figure 2: Merging opera-
tion tion

Merging

In a symmetric manner, two blocks carried by two leaves of the tree
can be merged into one single block. This operation modifies the
structure of the tree as shown figure 2.

3. STATES

One of the major properties that we want to ensure is that each
mobile node has the most recent version of the global document as
possible, which of course depends on which other mobile nodes it
has met. To achieve this goal each block has an associated lock,
and each version of a block is given a version number. The lock is
unique for a block and is shared by all the instances and hence ver-
sions of the block over the network. This lock has to be acquired by
anode when it wants to modify its local instance of the correspond-
ing block. The version counter attached to each block instance is
used to distinguish between the different versions.

3.1 Notations

We have identified a number of attributes that are worth main-
taining to describe the state of a block instance as seen by a given
node. The full notation for a block instance is the extensive list of
the values of these attributes:

(node, data, locked_by_me, available_for_me, version counter)

Because of space limitation this will not be described here and the
reader is refered to [1] for a detailed explanation. In this section we

focus on the reservation of the effective blocks of data. Only two
attributes are necessary for this purpose and we will thus use the
following short notation:

(locked_by_me, available_for_me)

The internal nodes of the tree are irrelevant in this section because
nodes cannot be locked, the effective data being carried by leaves.

3.2 Possible states of a block instance as seen
by a given node N
For a mobile node N its instance of a block B can be in the dif-
ferent states shown table 1. Note that the state (1, 1) does not make
sense because a block cannot be lockable by a node that already
locks it.

State | Is the lock in the same | Who is locking the block ?
group as N ?
0, 1) | YES Nobody
(1,0) | YES N
0,0) | YES Another member of the group
of N
NO The block is locked or lock-
able in another group

Table 1: Possible states of a block instance at a given node N

3.3 Relationship between the states of the in-
stances of a block within a group and be-
tween groups

The different states of the different instances of a block, as seen

by different nodes at a given instant, are listed table 2.

Node | Other group members Other groups
©, 1) | ©1D 0, 0)

(1,0) | (0,0) 0, 0)

(0,0) | (1, 0) for only one member, | (0, 0)

(0, 0) for the others
or (0, 0)

(0, 0) in all other groups ex-
cept in one group where ei-
ther one node can be in state
(1, 0) and the other nodes in
state (0, 0) or all nodes are in
state (0, 1)

Table 2: States of the instances of a block as seen by different
nodes

4. TRANSITIONS

In this section we list the possible state transitions of a block
instance. The state of a block instance changes when locking or
releasing a lock on a (possibly other) instance of this block, or when
a mobile unit joins or leaves a group.

4.1 Intragroup state changes

T1: (0,1) — (1,0) The node locks the block

T2: (0,1) —(0,0) The node leaves the group or another
node in the group locks the block (T1)
The node releases the lock

A node in the same group as the current
node releases the lock (T3) or a node
with the block in state (0, 1) joins the

group

T3: (1,0)— (0, 1)
T4: (0,0) — (0, 1)

4.2 State changes when a node joins a group

When a node joins a group, it can carry with it some block in-
stances that it is locking. Thus, the join operation has the influence
shown table 3. When a block is first created, it has a unique in-
stance, and it is locked by the node that created it.

Joining entity Other entities in the joined

group
(1, 0), no change no change
(0, T), no change 0,00 — (0, 1)

(0, 0) — (0, 1) if state (0, 1) is in | no change
the group
else no change

Table 3: State changes when a node joins a group

Note that a node which is alone can have a block instance in state
(0, 1) because in our system a single node forms a one-node group.
The join operation supposes that a node is alone when it joins a
group, i.e. it left its previous group before the operation.

4.3 State changes when a node leaves a group

When a node leaves its current group, it has to send a message
to inform all the other members of the group that it is leaving. It
then forms a new group that contains only itself. In table 4 we can
see that when a mobile unit leaves a group, no other entity has to
change the state of any of its block instances.

Leaving entity Other entities in the left group
0, 1) — (0, 0) no change
(1, 0), no change | no change
(0, 0), no change | no change

Table 4: States changes when a node leaves a group

5. GROUP MANAGEMENT

In our system, mobile devices are organized in groups, and the
assumption is that every member of a given group can communi-
cate with all the other members of that group. In other words, the
members of a group form a complete graph. This hypothesis would
not be realistic in a general context but our target systems are small
networks where a group is composed of nodes that are close to each
other.

When first entering the system, a node is the only member of its
group. It can thereafter join and leave other groups. When leaving
a group, a node creates a new group of which it is the only member.
Each group is attached a counter that is incremented each time its
composition changes. The value of this counter is (re-)set to O when
there is only one node in the group and each node keeps a history
of the evolution of the group that it belongs to and a copy of the
counter.

As explained above, the assumption is that groups are relatively
stable, i.e that their composition does not change too quickly, and
that the members of a group form a complete graph. Nevertheless
this can still become false because of mobility or because a node
is switched off. Therefore, a protocol has to be set up to make
it possible to bring the system back to a configuration where the
hypothesis is satisfied again. The protocol that we have designed is
presented below.

5.1 Integrity checking protocol

The goal of the protocol that we define here is to check if all
the members of the group of a given node are still reachable by
this node, if the composition of the group has not changed relative
to the knowledge that the node has of its group and if the version

of the document that the node owns (including the state of block
instances) is up-to-date relative to the group current version.

This process has to be applied every time a node is subject to or
is achieving one of the two following critical operations:

e It is contacted by a node that wants to join the group. This
supposes that the node is aware of the composition of its
group at that instant so that it can check if the new candidate
member is able to communicate with all the current group
members (see section 5.2).

e Itis willing to lock a block. Even though the locking process
works in any configuration, it provides better results (i.e. no
node wrongly believes that the block is locked - which is
anyway without strong consequence thanks to the integrity
checking protocol that we are defining) if the connectivity
remains stable within the group while it operates (see sec-
tion 6.1). This operation furthermore supposes that the node
has an up-to-date version of the block to lock, since it would
not make sense to modify an obsolete version of the docu-
ment.

To meet these suppositions, a node does the following opera-
tions. It first checks that it can reach all the nodes of its group us-
ing some discovery mechanism and looking for the current version
of the group composition. If it cannot reach some of its theoret-
ical peers, it leaves the group. If this first step is successful, the
node then checks the current version of the document present in
the group and, if required, updates its own version. This especially
includes the states of the nodes that wrongly believe that a block is
locked (see section 6.1). The inconsistencies that make these up-
date operations necessary can be the result of a loss of connectivity
during block locking/releasing operations or group related opera-
tions. This will be pointed out in the following sections.

When this process is finished (at instant #) the node is sure to have
a consistent and an up-to-date version of the document. At #+¢, if
the node is still in the same group, either it has an up-to-date ver-
sion of the document or if network failures occurred, it can get an
up-to-date version running this protocol again. The network slow
evolution assumption guarantees the convergence of this process.

5.2 Joining a group

A mobile node can join an existing group. This operation is so
that once it is completed, the joining node has exactly the same
version of the document as the other members of the group. In
order to join a group, a mobile node D communicates with a node
already in the group, say A. The process is as follows:

1. D informs A that it wants to enter its group. Assume that this
group also currently contains B and C. Before proceeding,
A checks its integrity using the protocol described in sec-
tion 5.1.

2. A and D synchronize their versions of the document (this op-
eration is described in section 8).

3. If D has the most recent version of some blocks, A broadcasts
the synchronization information to all the other members of
the group so that they can update their versions of the docu-
ment.

4. D sends A the list of the mobile nodes that are in its commu-
nication range.

5. (a) Ifthis list includes all the current members of the group
(i.e. A, B and C), D can enter the group, that is now
the set of nodes {A,B,C,D}. A increments the group
version counter and notifies all the other members of
the group that D is now a group member.

(b) If this list does not include all the current members of
the group, then D is denied access to the group.

6. A sends D all the changes that happened in the group since
step (2) (block updates, ...).

It is easy to see that during the first three steps, group operations
have no influence over the joining process. Difficulties can happen
during steps 4 and 5, if the group accepts a new member after A
has sent the list of mobile terminals that it can reach, and if this list
does not include the new member. In this case, that should anyway
rarely happen, D is denied access to the group, but it can still retry
to join later. Note that step 6 may also lead to an inconsistent state
in case of loss of connectivity that would prevent a node from being
informed. This will be solved by the integrity checking process of
section 5.1.

5.3 Leaving a group

A node that wants to leave the group that it belongs to has to in-
form all the other members. The message that it sends for this pur-
pose does not contain any information about the blocks on which it
keeps a lock because this operation has no influence over the state
of the instances of this block owned by the other nodes of the group
(see table 4). In case a node cannot be informed this will again be
solved by the integrity checking process of section 5.1.

6. CONSISTENCY MANAGEMENT

In this section we explain how we ensure data consistency in our
system by using locks on blocks.

6.1 Locking a block

Locking a piece of data is a difficult operation in a MANet be-
cause of the network versatility. Before locking a block a node
needs to check the integrity of its environment as described in sec-
tion 5.1. By doing so we ensure that this node has the most recent
version of the document and that it is in the communication range of
all the other members of its group. For the sake of explanation, we
first assume that the connectivity inside the group does not change
during the block locking process. The case when the connectivity
changes will be specifically dealt with right after.

A node N that wants to lock a block asks all its group peers if it
can do so, and collects the number of positive answers that it gets.
More precisely, it proceeds as follows:

1. N sends a request to each (one at a time) other member of
its group. The message contains the block identifier, its ver-
sion number and a unique identifier of the initiating node, for
instance its IP or MAC address.

2. The other nodes in the group can answer as follows:

® OK_[ID]_[Num_of-Positive_Answers_obtained]. The answer-
ing node M agrees that N gets the lock. M will then put
the block in the state (0, 0). This means that M consid-
ers that the block will eventually be locked by N and is
therefore not available for itself. This may be be false if
N does not get the lock, but this way to proceed makes
it possible to avoid an additional message from N (and
the associated connectivity loss problems) to inform the
other nodes that it has got the lock (or not). To get back
to the interpretation of the answer sent by M, there are
two possibilities:

— M does not want the lock on block B.

— M wants to lock the block B but it has an ID smaller
than N. M then sends N the number of positive an-
swers its has cumulated, and N adds this number
to its own total.

e No_InvalidVersion. N has an invalid version of the block
B and must update it.

e No_[ID]. The answering node is also willing to lock the
block at the same time and its ID is bigger than the ID
of N. N then sends it the number of positive answers
that it has already obtained.

3. If N gets a number of positive answers bigger than half the
number of members of the group, it considers that it has ob-
tained the lock on the block. This number must be strictly
bigger than the integer part of (n+ 1)/2, n being the number
of other nodes of the group, minus node N. The lock is thus
unique because only one node can obtain (n+ 1)/2 positive
answers.

As soon as a node willing to lock B gives a positive answer to
another node, what means that its ID is lower than the ID of the
other node, it stops asking for the lock. It then considers that the
block is not available for it any longer even though this might be
false (see above), and puts it in the state (0, 0). Such an erroneous
state will be corrected by the integrity checking process of section
5.1.

6.2 Unlocking a block

To release a block B, a node N increments the version counter
associated with its instance of B and sends a message to all the
other members of its group. This message contains the updated
block, including the incremented version counter. By doing so,
update information are systematically propagated in the group. In
case a node cannot be informed the integrity checking process of
section 5.1 will again solve the problem.

Blocks that become unlockable

If a technical problem occurs, it may happen that the node that locks
a block B becomes unavailable (because it has been switched off or
has crashed or has moved away).The consequence is that the block
is then unlockable forever and it will thus be impossible to modify
it again. This is one of the drawbacks of a totally decentralized
approach.

7. INFLUENCE OF SPLITTING AND
MERGING OVER VERSION COUNTERS

The version counter is evolved so that the most recent version
of a block has the biggest counter value. The combination of the
operations described bellow with the use of a lock as described in
section 6 makes it possible to guarantee this property.

Splitting.
Splitting a block has no influence over its version counter. The

newly created sub-blocks are given version number 0 and they are
locked.

Merging.
When merging two blocks the version counter of the father block is

incremented and the sub-blocks are dismissed. The resulting block
is locked by the node achieving the operation.

8. SYNCHRONIZATION

The synchronization process that occurs between two nodes A
and B is the operation that consists in building the most recent ver-
sion of the document based on the versions of A and B. This oper-
ation typically occurs when a node joins a group (see section 5.2,
step 2).

Most recent version of a block

The following rules are used to work out the most recent version of
a block among two instances:

1. The bigger the version counter, the more recent the block.

2. If a node instance and a leaf instance have the same version
counter then the version of the node is more recent than the
version carried by the leaf. This is due to the fact that the
locking process guarantees that only the most recent version
of a block can be locked and thus splitted.

3. If two instances of a block have the same version counter and
are in the same state then the two versions are the same.

Synchronization

Two nodes that want to synchronize first compare their versions of
the tree that both describes the document and carries its contents.
To prepare this operation they exchange a representation of a prefix
ordering depth first search of the tree. Based on the result of the
comparison, they exchange the blocks that have been identified as
being different.

9. RELATED WORK

The domain of MANets is very active. A lot of projects are be-
ing developed, ranging from new routing protocols to high level
applications. In this section we focus on applications that deal with
sharing/disseminating information.

One of the major categories of applications on MANets are file
systems. Several approaches can be found in the literature. Ad-
HocFS [2] is such a system developed at INRIA3; this system is
based on the use of groups of mobile devices. All groups can syn-
chronize the versions of the files on a central server. Within each
group only one node can modify a particular block of a file at a
time, based on a token management mechanism. Another example
of a distributed file system is MFS [3]. It seems that file systems are
hard to deal with within the context of MANets because they need
stability to ensure data consistency. For example AdHocFS uses a
central server to ensure consistency between distinct ad hoc user
groups. Another important class of MANet applications that ad-
dress information sharing are those dealing with the dissemination
of information (see for instance [4, 5, 6, 7]). The major difficulty
of these systems is to ensure that the maximum number of mobile
terminals will eventually get the files they want. There is no issue
of consistency here because the files to disseminate cannot usually
be modified.

Another important domain targeted by MANets is that of support
tools for rescue teams. Cenwits [8] is such a tool. This application
makes it possible to disseminate the location of hikers so as to eval-
uate their position when they need rescue. This system uses a fully
decentralized view and opportunistic connectivity between hikers
or between a hiker and an access point that transmits information
to a central server. Workpad [9] is another system that helps orga-
nizing collaborative work of rescue teams. Its is supported by a two
levels architecture, a back-end peer-to-peer network and a front-end
composed of groups of connected mobile devices. Each group con-
tains a coordinator that is the relay between the front-end and the
back-end. At the front-end level, the system does not really pro-
pose any connectivity management solution within groups: nodes
are asked to move to maintain connectivity. When a node is going
to be disconnected another node is elected to follow it, becoming
a bridge and a multi-hops model is then used. There is nothing
to deal with the apparition of unconnected groups, the assumption
being that this does not happen in the target context.

3Institut National de Recherche en Informatique et en Automa-
tique.

10. CONCLUSION

In this paper we have presented a system to share a document
in a fully distributed manner among the nodes of a mobile ad hoc
network. We have explained how we organize the parts of the doc-
ument as a binary tree. We have shown that by using version coun-
ters and locks on the copies or instances of the blocks of the doc-
ument, we can ensure data consistency and guarantee that a node
always has the most recent version of the document as possible.
Our contribution is thus an architecture that makes it possible to
share and modify a document in a totally decentralized and mobile
manner, still ensuring data consistency. We have an effective imple-
mentation of this system that shows its feasibility. It uses the Java*
technology and Wi-Fi 802.11. It runs on Linux Debian platforms.
This application is a prototype and we currently use the serializa-
tion mechanism of Java to transmit block instances between nodes.
We plan to use XML in the next version. This work is currently
being extended in collaboration with the DGA to the management
and collection of information by troopers on the battle field, the
shared document being a strategic map. In this context evaluations,
will be achieved regarding some critical aspects such as synchro-
nization duration and data availability, based on the moves of the
mobile stations.

1]1. REFERENCES

[1] Lionel Barreére, Arnaud Casteigts, and Serge Chaumette. A Totally
Decentralized Document Sharing System for Mobile Ad Hoc
Networks. Technical report, LaBRI, Université Bordeaux 1, FRANCE,
2006.

[2] Malika Boulkenafed, Valérie Issarny, and David Menté. AdHocFS : A
serverless file system for mobile users. Technical Report RR-4303,
INRIA, 2001.

[3] Benjamin Atkin and Kenneth P.Birman. MFS: an adaptive distributed
file system for mobile hosts. Technical report, Departement of
Computer Science Cornell University, Ithaca, 2003.

[4] Hervé Roussain and Frédéric Guidec. Dissémination asynchrone
d’information en mode peer-to-peer dans les réseaux ad hoc. In
Proceedings of the first french-speaking conference on mobility and
ubiquity, Ubimob’04, 2004. Nice, France.

[5] Siddhartha K.Goel, Manish Singh, Dongyan Xu, and Baochun Li.
Efficient peer-to-peer data dissemination in mobile ad-hoc networks.
In Proceedings of International Workshop on Ad Hoc Networking,
IWAHN, August 2002. Vancouver, Canada.

[6] Maria Papadopouli and Henning Schulzrinne. Design and
implementation of a peer-to-peer data dissemination and prefetching
tool for mobile users. In Proceedings of the 2nd ACM International
Workshop on Modeling and Simulation of Wireless and Mobile
Systems, MSWIM, 1999. Seattle, USA,.

[7] Maria Papadopouli and Henning Schulzrinne. Seven degrees of
separation in mobile ad hoc networks. In Proceedings of the IEEE
Globecom ’00’, 2000. San Francisco, USA.

[8] Jyh-How Huang, Saqib Amjad, and Shivakant Mishra. Cenwits: A
sensor-based loosely coupled search and rescue system using
witnesses. In Proceedings of SenSys’05. ACM, 2005. San Diego, USA.

[9] Massimo Mecella, Tiziana Catarci, Michele Angelaccio, Berta
Buttazzi, Alenka Krek, Schahram Dustdar, and Guido Vetere.
Workpad: an adaptive peer-to-peer software infrastructure for
supporting collaborative work of human operatoes in
emergency/disaster scenarios. In Proceedings of the 2006
International Symposium on Collaborative Technologies and Systems.
IEEE Computer Society, 2006. Las Vegas, USA.

“4Java and all Java-based marks are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other
countries. The authors are independent of Sun Microsystems, Inc.
The other marks are the property of their respective owner.

